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Abstract This paper proposes a non-Fouriermodel of heat and anon-Fickmodel ofmoisture diffusion coupling
in unification with hygrothermoelasticity theory within the framework of time-fractional calculus theory. The
generalized two-temperature theory of hygrothermoelasticity has been used to develop the relevant linearly
coupled partial differential equations system. In the context of time-fractional calculus theory, we investigate a
hygrothermal elastic problem for a centrally symmetric sphere exposed to physical heat andmoisture load at its
surface within the limited spherical region. The integral transform approach produces analytical formulas for
the transient response of temperature change, moisture distribution, displacement, and stress components in
the sphere for pulsed and continuous heat-moisture flux at the sphere’s surface. The Gaver–Stehfest procedure
is used to invert the analytical hygrothermal variation solutions that were derived in the Laplace domain. The
Kuznetsov convergence criterion has studied the problem’s stability and bounded variations. The effects of
fractional order on the hygrothermal fields and hygrothermoelastic stress response are graphically represented
and calculated using numerical data. The specific heat and moisture connection, which abides by Fourier heat
conduction and Fick’s moisture diffusion, is recovered as a particular case when the fractional-order derivative
reduces to the first-order derivative. The study reveals a significant coupling effect between temperature and
moisture in composite material T300/5208, with a maximum discrepancy of up to 50%.

Keywords Hygrothermoelastic · Dual-phase lag · Integral transform approach · Fractional calculus ·
Numerical results

List of symbols

T Temperature
C Concentration of water vapor
� , ω Material constants
C Mass of moisture
V Volume fraction of the voids
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ρm Density of the material
∇ Gradient operator
� Thermodynamic temperature
b Discrepancy factor
qθ Sectional heat flux
qψ Moisture flux
ur Radial displacement
E Young’s modulus
υ Poisson ratio
σrr Radial stress
σθθ Tangential stress
δ(t) Dirac delta function
qm Moisture flux vector
qh Heat flux vector
γ Heat released from a unit mass
Cp Specific heat
kh Thermal conductivity
km Moisture diffusion coefficient
τh Relaxation time of heat flux
τm Relaxation time of moisture
τq Heat flux vector
τT Temperature gradient
γ1 Thermal expansion coefficient
γ2 Moisture expansion coefficient
s Transformed parameter
θ Thermodynamic temperature
ϕ Conductive temperature
ψ Moisture distribution
V Heat propagation velocity

1 Introduction

The combined effects of temperature and moisture directly influence various materials and structures, such
as polymers, porous composites, geomaterials, and asphalt concrete. Numerous researchers have developed
different models to simulate how polymers and the composites they form react to the loadings of moisture
and temperature. Sih et al. [1] could quantitatively compute the hygrothermal stresses in composite materials
using the coupled theory of heat and humidity. The transient responses of an endlessly long hollow cylinder
and a solid cylinder that were subjected to hygrothermal loadings were solved by Chang et al. [2] using a
linear theory of coupled heat and moisture. Benkhedda et al. [3] established a makeshift model to analyze the
hygrothermoelastic stresses in composite laminated plates during desorption without computing the moisture
content. Zenkour [4] also presented an analytical explanation for the hygrothermal reactions that occurred
in inhomogeneous piezoelectric hollow cylinders when these cylinders were subjected to mechanical and
electrical loads. Chiba and Sugano [5] dealt with the one-dimensional transient heat and moisture diffusion
and obtained a hygrothermal stress field in a layered plate subjected to hygrothermal loadings. Ishihara et al.
[6] investigated the hygrothermal field in a porous media subjected to heat and moisture while considering the
nonlinear coupling.

Most of the previously discussed research is founded on the conventional laws of Fourier and Fick, which
are widely used to describe heat and mass transfer in many different real-world scenarios. The traditional
rules of Fourier and Fick, which have been shown above, do not, however, appropriately reflect a variety
of other circumstances. For example, Mitra et al. [7] conducted an experimental investigation to show that
the hyperbolic heat conduction model is more suitable in biological materials and can better represent the
complete heat conduction process. Tzou [8] explored the lagging behavior for heat transfer in small-scale and
quick transitory systems. In the overview study that Hetnarski and Ignaczak [9] wrote about the modeling
of thermoelastic waves, they discussed several different models, some of which were the Lord and Shulman
model [10], the Green and Lindsay model [11], the Hetnarski and Ignaczak model [12], the Green and Naghdi
model [13], and the Chandrasekharaiah and Tzou model [14, 15].
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Fractional-order calculus has recently been used in a number of scientific fields, including chemistry,
physics, rheology, robotics, engineering, geology, bioengineering, and others, as a logical extension of con-
ventional differential and integral calculus. Fractal polymers, glasses, dielectrics, and semiconductors, to
name a few examples, are examples of complex systems that have been the subject of extensive research
into fractional-order differential equations as a valuable method to characterize anomalous diffusion [16].
This research has shown that fractional-order differential equations can be a method that accurately describes
anomalous diffusion. Depending on the value of the fractional order [17], the time-fractional diffusion-wave
equation can classify anomalous diffusion into four groups: subdiffusion, normal diffusion, super-diffusion,
and ballistic diffusion. The mathematical properties of the time-fractional diffusion-wave equation are dis-
cussed in references [18, 19], which interpolates the wave equation with the parabolic, classical Fourier heat
conduction equation.

Recently, Chaves [20] developed a generalized version of Fick’s rule, yielding the Levy distribution regard-
ing space-fractional derivatives. Zanette [21] modified the usual Fick’s equations to apply to circumstances
involving fractional diffusion in which either the waiting time distribution or the displacement probability den-
sity showed power-law dropping. Gorenflo et al. [22]were successful in deriving a temporal fractional diffusion
equation by employing a fractional Fick’s law, which is the rule that governs transport processes that have
extended memory. Povstenko [23] utilized the time-fractional diffusion equation to explain the radial diffusion
in a sphere of the Dirichlet problem and the Neumann issue, respectively. Later, Povstenko [24] proposed a
quasi-static uncoupled thermoelasticity theory based on the heat conduction equation with a time-fractional
order similar to the fractional Fick’s law.

Sherief et al. [25] andYoussef [26] proposed new thermoelasticity and generalized thermoelasticity theories
based on fractional calculus with one relaxation time technique. Ezzat and El-Karamany [27] presented a fresh
approach to investigate heat conduction. They used Jumarie [28] fractional Taylor’s series to do so. The study
conducted by Povstenko [29] focused on the topic of time-fractional thermoelasticity for a sphere under the
influence of heat flow. Finally, the authors referred to a few thermoelastic papers that give insight into techniques
used in two-temperature thermoelasticity theory [57–60].

Andarwa and Tabrizi [30] studied the coupling of heat andmass transfer with a non-Fourier effect, and Silva
et al. [31] presented an extension of the linear Luikov system equations of the coupled heat and transferred
through porous media based on a generalization of the Fourier and Fick’s laws connected to non-Markovian
processes. After conducting additional research, a closed-form solution to the time-fractional hygrothermoe-
lasticity problem for a cylinder with a certain surface temperature and amount of moisture was discovered
[32]. In the setting of hyperbolic heat-moisture coupling with varied phase lags of heat and moisture fluxes,
Peng et al. [33] examined transient hygrothermoelastic responses in an elastic cylinder subjected to abrupt
temperature and moisture change by looking at the behavior of the material.

The present study presents a theoretical framework based on a two-temperature dual-phase-lag time-
fractional hygrothermoelastic model to elucidate the influence of coupled heat and moisture on elastic stresses
in a centrally symmetric sphere subjected to heat and moisture flux. The linearly coupled partial differential
equations for the hygrothermal field have been framed on the two-temperature theory proposed by Sherief et al.
[25] and Youssef [26]. It is noted that classical Fourier and Fick’s forms have a significant law in assuming an
infinitely fast propagation. The Fourier and Fickmodel has been improved by introducing a given characteristic
time constant, known as phase lag of the heat-moisture flux and the temperature-humidity gradient, to remove
the paradox of infinite speed propagation. The integral transform approach derivates closed-form solutions
of temperature and moisture distribution components over various fractional orders. The numerical Laplace
inversion is obtained by using the Gaver–Stehfest algorithm. The non-dimensional numerical values of the
results are computed and presented graphically. The proposed dual-phase-lag (DPL) two-temperature model
can be reduced to other previously reported models in certain limited cases.

2 Statement of the problem

2.1 Dual-phase-lag hygrothermoelastic theory

Hartranft [34] proposed that the temperature, T, and the concentration of water vapor present in the unit
volume of the void, C, are linearly linked to the quantity of moisture absorbed by the solid per unit mass,
as M � constant + �C − ωT , where ∂M/∂C � � and ∂M/∂T � − ω. Then, the amount of moisture in
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composite per unit mass of solid, m, can be expressed as ρmm � VC + ρmM. Due to the presence of liquid
and vapor, the moisture and heat transfer obey the conservation of mass and energy as

∇ · qh � ρmγ
∂M

∂t
− ρmCp

∂T

∂t
(1)

∇ · qm � −ρm

V

∂M

∂t
− ∂C

∂t
(2)

Within the framework of the hygrothermal coupling, qh obeys the Fourier law [54, 55] and qm follows
Fick’s law [39]

qh + τqh
∂qh
∂t

� −kh∇T (3)

qm + τqm
∂qm
∂t

� −km∇C (4)

To examine the microstructural interactions within solid heat conductors at a microscopic level, Tzou [14]
presented a dual-phase-lag (DPL) model with delay time translation of the heat flux vector τqh and temperature
gradient τTh as

q(t + τqh) � −kh ∇T (t + τTh), kh > 0 (5)

and it is assumed that moisture Fick’s law, and presented as a dual-phase-lag model with delay time translation
of the heat flux vector τqm and temperature gradient τCm

q(t + τqm) � −km ∇C(t + τCm), km > 0 (6)

Expanding Eqs. (5) and (6) using fractional Taylor’s series of time-fractional order [28] and retaining terms
up to the desired order (α,β) in phase lag [56] yields the following result[

1 +
τα
qh

α!

∂α

∂tα
+

τ 2αqh

(2α)!

∂2α

∂t2α

]
qh � −kh

[
1 +

τα
Th

α!

∂α

∂tα
+

τ 2αTh

(2α)!

∂2α

∂t2α

]
∇T (7)[

1 +
τ

β
qm

β!

∂β

∂tβ
+

τ
2β
qm

(2β)!

∂2β

∂t2β

]
qm � −km

[
1 +

τ
β
Cm

β!

∂β

∂tβ
+

τ
2β
Cm

(2β)!

∂2β

∂t2β

]
∇C (8)

in which α and β are the fractional orders, and are limited to lie in a range between 0 and 1. Further, Ignaczak
and Ostoja-Starzewski [35, pp. 16–18] analyzed the dual-phase-lag model for integer time derivatives. Here,
partial differential equations with fractional derivatives interpolate between elliptic and parabolic equations
and between parabolic and hyperbolic equations. In the case of partial differential equations of the fractional
order, there is no classification of elliptic, parabolic, and hyperbolic equations. Hence, as mentioned earlier,
the statement is widened for partial differential equations of the fractional order and concludes that Eqs. (7)
and (8) can be reduced to second-order hyperbolic partial differential equations, if τ0h � τqh − τTh > 0,
τ0m � τqm − τCm > 0; parabolic if τ0h � τqh − τTh � 0, τ0m � τqm − τCm � 0; and elliptic if
τ0h � τqh − τTh < 0, τ0m � τqm − τCm < 0.

Now, eliminating variables qh and qm in Eqs. (1)–(8), one obtains

L

[
1 +

τα
qh

α!

∂α

∂tα
+

τ 2αqh

(2α)!

∂2α

∂t2α

]
∇2T �

[
1 +

τα
Th

α!

∂α

∂tα
+

τ 2αTh

(2α)!

∂2α

∂t2α

](
∂T

∂t
− ηc

∂C

∂t

)
(9)

D

[
1 +

τ
β
qm

β!

∂β

∂tβ
+

τ
2β
qm

(2β)!

∂2β

∂t2β

]
∇2C �

[
1 +

τ
β
Cm

β!

∂β

∂tβ
+

τ
2β
Cm

(2β)!

∂2β

∂t2β

](
∂C

∂t
− λc

∂T

∂t

)
(10)

in which

L � kh/ρm(Cp + γω), ηc � γ�/(Cp + γω) (11)

D � kmV/(V + ρm� ), λc � ρmω/(V + ρm� ) (12)
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If we couple Eq. (5) with the energy equation [36] given by

−∇q(t) � c [∂T (t)/∂t], c > 0 (13)

then there are sequences of the components of a point spectrum that are always such that the real part of the
resulting equation approaches infinity. This result demonstrates the problem’s instability and indicates that
the model is ill-posed and unstable. As a result, even though a constitutive equation intuitively supports our
expectations, its mathematical implications force us to reject it. Therefore, based on the findings of Quintanilla
[36], it is feasible to hypothesize that the fractional dual-phase-lag model, as depicted in Eq. (9), can be
considered stable and well-posed within the framework of the two-temperature hygrothermoelastic theory.

In such a scenario, Chen and Gurtin [37] proposed separating real materials into simple and non-simple
categories by considering two temperatures, conductive and thermodynamic, and the two temperatures are
related by

� � (1 − b∇2) T , b > 0 (14)

The thermodynamics and conductivity temperatures exhibit disparities between simple and non-simple
materials, although they remain similar for simple materials. In non-simple materials, the thermodynamic
quantities depend on the conductive temperature and its spatial derivatives, making these two temperatures no
longer equal. The internal energy, entropy, heat flux, and thermodynamic temperature depend on the conductive
temperature and its first two spatial gradients. Here, the material parameter b is a crucial distinction between
the two-temperature and classical theories. As a limiting case, b → 0,� → T give rise to the classical theory.

Now, multiplying (1−b∇2) to both sides of Eq. (9) and neglecting differential coefficients of order higher
than ∇2, one obtains

L

[
1 +

τα
qh

α!

∂α

∂tα
+

τ 2αqh

(2α)!

∂2α

∂t2α

]
∇2T �

[
1 +

τα
Th

α!

∂α

∂tα
+

τ 2αTh

(2α)!

∂2α

∂t2α

](
∂�

∂t
− ηc

∂C

∂t

)
(15)

Thus, Eqs. (10) and (15) express the linearly coupled partial differential equations system the authors are
curious about.

2.2 Limiting cases for other model approaches

Applying the various values of phase lags τqh , τTh , τCm , τqm , one will obtain the following particular cases
of hygrothermoelasticity theory as follows:

(i) Taking α � β � 1, τqh � τTh � τCm � τqm � 0, b � 0, and T � � in Eqs. (10) and (15), the model
is parabolic and leads to the classical hygrothermal coupled theory (CHTE) [38]

L∇2T − ∂T/∂t + ηc (∂C/∂t) � 0 (16)

D∇2C − ∂C/∂t + λc(∂T/∂t) � 0. (17)

(ii) Taking α � β � 1, τqh � τqm � 0, τTh ≡ τ0h > 0, τCm ≡ τ0m > 0, τ 2Th → 0 τ 2Cm → 0,
T � �, and b � 0 in Eqs. (10) and (15), then the model is hyperbolic and leads to a generalized theory of
hygrothermoelasticity [10, 39] given as

L∇2T − [1 + τ0h (∂/∂t)](∂T/∂t − ηc ∂C/∂t) � 0 (18)

D∇2C − [1 + τ0m (∂/∂t)](∂C/∂t − λc∂T/∂t) � 0. (19)

(iii) Taking α ∈ (0, 1], β ∈ (0, 1], τTh � τCm � 0, τqh ≡ τ0h , τqm ≡ τ0m , τ 2qh → 0 τ 2qm → 0, T �� �,
and b � 0 in Eqs. (10) and (15), then the governing equations [40] are identified as work derived for the
thermoelasticity formula as a DPL coupled model with a two-temperature hygrothermal model (MHTE)

L∇2T − [1 + (τα
0h/α! )(∂

α/∂tα)](∂T/∂t − ηc ∂C/∂t) � 0 (20)

D∇2C − [1 + (τβ
0m/β! )(∂β/∂tβ )](∂C/∂t − λc∂T/∂t) � 0. (21)
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Fig. 1 Schematic of a sphere in a heat, moisture environment

2.3 Hygrothermal field

Consider a perfectly hygrothermoelastic solid sphere with a central symmetry in a homogeneous isotropic
thermoelastic medium whose outer surfaces are traction free.

The hygrothermoelastic interactionswithin the solid sphere are assumed to be spherically symmetric. In this
instance, we believe that the hygrothermal influence on elastic stresses and deformation; however, temperature
and moisture do not alter as a response to the elastic field. A solid sphere is assumed to occupy the domain
0 < r ≤ r0, as shown in Fig. 1. Initially, the sphere is kept at a constant temperature and humidity surrounding
it, and no external forces are applied through the medium. The following non-dimensional values have been
provided as a means of converting the dimensionless system of governing equations:

r �r/r0, θ � (T − T0)/T0, ψ � (C − C0)/λcT0, K � (D/r20 )(r
2
0/L)β/α ,

u �ζu,ϑ � �/T0, (t , t
α , τα

qh , τα
Th , τβ

qm , τ
β
Cm) � L(t , tα , τα

qh , τα
Th , τβ

qm , τ
β
Cm)/r

2
0 (22)

The dimensionless form of the governing equations of the model, which has been simplified by dropping
the overbar sign for the sake of simplicity, is given as

ϑ �
[
1 − b

(
∂2

∂r2
+
2

r

∂

∂r

)]
θ (23)[

1 +
τα
qh

α!

∂α

∂tα
+

τ 2αqh

(2α)!

∂2α

∂t2α

]
∇2θ �

[
∂

∂t
+

τα
Th

α!

∂α+1

∂tα+1
+

τ 2αTh

(2α)!

∂2α+1

∂t2α+1

]
(ϑ − ηcλcψ) (24)[

1 +
τ

β
qm

β!

∂β

∂tβ
+

τ
2β
qm

(2β)!

∂2β

∂t2β

]
∇2ψ �

[
∂

∂t
+

τ
β
Cm

β!

∂β+1

∂tβ+1
+

τ
2β
Cm

(2β)!

∂2β+1

∂t2β+1

](
ψ − θ

K

)
(25)

∇2 � ∂2

∂r2
+
2

r

∂

∂r
(26)

We look at a physical boundary condition at the surface with the specified initial and boundary values of
the matter flux, which is written as

θ (r , 0) � ψ(r , 0) � 0,
∂θ

∂t
(r , 0) � ∂ψ

∂t
(r , 0) � 0 (27)

θ (1, t) � ℘θ (t), ψ(1, t) � ℘ψ (t) (28)

where ℘θ and ℘ψ are the prescribed sectional heat and moisture flux supply at r � 1.
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2.4 Hygrothermoelastic field

The equilibrium equation without body force in a spherical coordinate system [41]

dσrr
dr

+
2

r
(σrr − σϕϕ) � 0 (29)

and the stress components in terms of the displacement component ur are

σrr � E

(1 + υ)(1 − 2υ)

[
(1 − υ)

dur
dr

+ 2υ
ur
r

− (1 + υ)g

]
(30)

σϕϕ � σφφ � E

(1 + υ)(1 − 2υ)

[
υ
dur
dr

+
ur
r

− (1 + υ)g

]
(31)

where g � γ1(T − T0) + γ2(C − C0).
Here, we take for the strain components as err � ∂ur/∂r and eϕϕ � eφφ � ur/r ; the cubical dilatation e

reduces to e � err + eϕϕ + eφφ � (1/r )[∂(urr2)/∂r ], and the stress–strain equations will take the following
forms [41]

ur � 1

(1 − υ)

⎡
⎣(1 + υ)

1

r2

r∫
0

gr2dr + 2(1 − 2υ)
r

r30

r0∫
0

gr2dr

⎤
⎦,

σrr � E

(1 − υ)

⎡
⎣ 2

r30

r0∫
0

gr2dr − 2

r3

r∫
0

gr2dr

⎤
⎦,

σϕϕ � E

(1 − υ)

⎡
⎣ 2

r30

r0∫
0

gr2dr +
1

r3

r∫
0

gr2dr − g

⎤
⎦ (32)

To convert the dimensionless system of governing equations, we introduce the following non-dimensional
quantities as

σ rr � (1 − υ)σrr
Eγ1T0

, σϕϕ � (1 − υ)σϕϕ

Eγ1T0
, ur � ur(1 − υ)

γ1(1 + υ)T0r0
(33)

If we assume that the dimensionless displacements, strains, and stresses are the functions of r , t only, then
the equation of motion in terms of the displacement u without external body forces is given by

ur � 1

r2

r∫
0

g r2dr +
2(1 − 2υ)

1 + υ
r

1∫
0

g r2dr ,

σ rr � 2

1∫
0

g r2dr − 2

r3

r∫
0

g r2dr ,

σϕϕ � 2

1∫
0

g r2dr +
1

r3

r∫
0

g r2dr − g

(34)

where g � θ + (γ2/γ1)λcψ , and the primes, as shown in Eq. (34), will no longer be included as we proceed.
Further, it is assumed that the sphere experiences no external forces or restrictions on its outer surface, that is,
traction free at σrr(1, t) � 0. Moreover, considering the quiescent state, the initial values of displacement ur
and the stresses σrr, σϕϕ , and their first-order time-derivative, are uniformly zero.When a mechanical stimulus
is applied, the classical solution can be hired to calculate the corresponding elastic reactions. These individual
replies can be overlaid to generate the complete set of elastic responses. Therefore, the present study focuses
on the flexible reaction to hygrothermal loading.
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3 Solution of the problem

3.1 Solution of the heat conduction problem

Applying Laplace transform to Eqs. (23)–(25) and using Eq. (27), we get

ϑ∗ �
[
1 − b

(
∂2

∂r2
+
2

r

∂

∂r

)]
θ∗ (35)[

1 + sα
τα
qh

α!
+ s2α

τ 2αqh

(2α)!

]
∇2θ∗ �

[
s + sα+1 τα

Th

α!
+ s2α+1

τ 2αTh

(2α)!

]
(ϑ∗ − ηcλcψ

∗) (36)

[
1 + sβ τ

β
qm

β!
+ s2β

τ
2β
qm

(2β)!

]
∇2ψ∗ �

[
s + sβ+1 τ

β
Cm

β!
+ s2β+1

τ
2β
Cm

(2β)!

](
ψ∗ − θ∗

K

)
(37)

where ϑ∗ � ϑ∗(r , s) and θ∗ � θ∗(r , s), − and the asterisk is the transformed function in the Laplace domain.
We introduce a modified finite spherical Hankel integral transform [42] stated as

H0n[ f (r )] � f (ωn) �
1∫

0

f (r ) r2 j0(ωnr )dr (38)

f (r ) �
(
4

π

) ∞∑
n�1

ωn

[J ′
1/2(ωn)]2

1∫
0

f (r ) j0(ωnr )r
2dr (39)

and the orthogonal property as

H0

[
d2 f

dr2
+
2

r

d f

dr

]
� −ω2

n f (ωn) + ωn j0(ωn) f (ωn)|r�1 (40)

where− the kernel is given as j0(ωnr ) � √
π/(2ωnr ) J1/2(ωnr ), the eigenvaluesωn are defined by the solution

of j0(ωn) � 0, with ωn is an nth root of the spherical Bessel function j0(ωnr ) of order 0, respectively. Here,
[J ′

1/2(ωn)]2 � 2
∫ 1
0 [J1/2(ωnr )]2r dr [43] where prime denotes the differentiation of J1/2(ωnr ).

Applying the transform defined by Eq. (38) to Eqs. (35)–(37) and keeping boundary conditions θ∗(1,
s) � ℘θ (s) and ψ∗(1, s) � ℘ψ (s) in mind, one obtains

ϑ
∗ � 1 − b [ω2

n θ
∗
+ j0(ωn)] qθ (t) (41)

�1(s)[−ω2
n θ

∗
+ j0(ωn)]℘θ (s) � �1(s)(ϑ

∗ − ηcλcψ
∗
) (42)

�2(s)[−ω2
n ψ

∗
+ j0(ωn)]℘ψ (s) � �2(s)(ψ

∗ − θ
∗
)/K (43)

where θ
∗ � θ

∗
(ωn , z, s), ψ

∗ � ψ
∗
(ωn , z, s) is the transformed function of θ∗, ψ∗, and the single overbar ( ¯)

means a function in the transformed domain, respectively. Here.

�1(s) � 1 + sα[τα
qh/α! ] + s2α[τ 2αqh /(2α)! ], (44)

�1(s) � s + sα+1[τα
Th/α! ] + s2α+1[τ 2αTh/(2α)! ], (45)

�2(s) � 1 + sβ [τβ
qm/β! ] + s2β [τ 2βqm/(2β)! ] (46)

�2(s) � s + sβ+1[τβ
Cm/β! ] + s2β+1[τ 2βCm/(2β)! ] (47)

Eliminating ϑ
∗
from Eqs. (41) and (42), one gets

r2ω2
n[ω

2
n θ

∗ − �1(s)(−1 + ηcλcψ
∗
+ b℘θ (s)ω

2
n)]

2 � ℘2
θ (s)[1 + b�1(s)]

2 sin2(rωn) (48)
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Solving Eqs. (43) and (48), one obtains

θ
∗ � �1(s)(rωn)2A4 + [−℘ψ (s)�1(s)A2 + A1A4] sin(rωn)

(rωn)2{A2A3 + [−1 + b℘θ (s)�1(s)]ω2
n[�2(s) + ω2

n]}
(49)

ψ
∗ � A3(rωn)2 + {℘ψ (s)r [−1 + b℘θ (s)�1(s)]ω3

n + A1�2(s)rωn} sin(rωn)

(rωn)2{A2A3 + [−1 + b℘θ (s)�1(s)]ω2
n[�2(s) + ω2

n]}
(50)

where A1 � ℘θ (s)[1 + b�1(s)], A2 � ηcλc, A3 � �1(s)�2(s), A4 � �2(s) + ω2
n .

Applying the inversion theorem of finite Hankel transform as given in Eq. (39) on Eqs. (49) and (50), one
obtains

θ∗ �(4/π)
∞∑
n�1

B1{�1(s)(rωn)
2A4 + [−℘ψ (s)�1(s)A2

+ A1A4] sin(rωn)} j0(ωnr ) (51)

ψ∗ �(4/π)
∞∑
n�1

B1{A3(rωn)
2 + {℘ψ (s)r [−1 + b℘θ (s)�1(s)]ω

3
n

× A1�2(s)rωn} sin(rωn)} j0(ωnr ) (52)

The functions presented in Eqs. (51) and (52) describe the general solution of temperature and moisture
distribution at every instant and at all places of a solid sphere when sectional hygrothermal loading is applied
in generalized form. Therefore, Eqs. (51)–(52) represent the Laplace domain’s governing equations.

Substituting Eqs. (51) and (52) in Laplace transformed function g∗ � θ∗ + (γ2/γ1)λcψ∗, one obtains

g∗ �(4/π)
∞∑
n�1

B1
〈
[�1(s)A4 + � A3](rωn)

2 − ℘ψ (s)�1(s)A2 + A1A4

+� sin(rωn)
{
℘ψ (s)r [−1 + bqθ (s)�1(s)]ω

3
n + A1�2(s)rωn

}〉
j0(ωnr ) (53)

where

B1 �ωn[J
′
1/2(ωn)]

2/
〈
(rωn)

2{A2A3 +
[−1 + b℘θ (s)�1(s)]ω

2
n[�2(s) + ω2

n

]}〉
,

� �(γ2/γ1)λc.

3.2 Solution of the hygrothermoelastic field

Using Eqs. (53) and (34) will take the form

u∗
r � 4√

2π

∞∑
n�1

(B1/ω
1/2
n )

〈
[�1(s)A4 + � A3](rωn)

2 − ℘ψ (s)�1(s)A2

+A1A4 + � sin(rωn)
{
℘ψ (s)r [−1 + b℘θ (s)�1(s)]ω

3
n + A1�2(s)rωn

}〉
×

⎧⎨
⎩ 1

r2

r∫
0

r3/ 2 J1/2(ωnr ) dr +
2(1 − 2υ)

1 + υ
r

1∫
0

r3/ 2 J1/2(ωnr ) dr

⎫⎬
⎭ (54)

σ ∗
rr � 4√

2π

∞∑
n�1

(B1/ω
1/2
n )

〈
[�1(s)A4 + � A3](rωn)

2 − ℘ψ (s)�1(s)A2

+A1A4 + � sin(rωn)
{
℘ψ (s)r [−1 + b℘θ (s)�1(s)]ω

3
n + A1�2(s)rωn

}〉
×

⎧⎨
⎩2

1∫
0

r3/ 2 J1/2(ωnr ) dr +
2

r3

r∫
0

r3/ 2 J1/2(ωnr ) dr

⎫⎬
⎭ (55)
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σ ∗
ϕϕ � 4√

2π

∞∑
n�1

(B1/ω
1/2
n )

〈
[�1(s)A4 + � A3](rωn)

2 − ℘ψ (s)�1(s)A2

+A1A4 + � sin(rωn)
{
℘ψ (s)r [−1 + bqθ (s)�1(s)]ω

3
n + A1�2(s)rωn

}〉
×

⎧⎨
⎩2

1∫
0

J1/2(ωnr ) r
3/ 2dr +

1

r3

r∫
0

J1/2(ωnr ) r
3/ 2dr −

(ωn

r

)1/2
J1/2(ωnr )

⎫⎬
⎭ (56)

where

1∫
0

r3/ 2 J1/2(ωnr ) dr �
√

2

π

1

ω
5/2
n

[−ωn cos(ωn) + sin(ωn)] (57)

r∫
0

J1/2(ωnr ) r
3/ 2dr �

√
2

π

1

ω
5/2
n

[−rωn cos(rωn) + sin(rωn)] (58)

4 The numerical inversion of the Laplace transforms

Consider the Gaver–Stehfest algorithm [44–46], which aims to approximate f (t) by a sequence of functions,
can be given as

f (t) ≈ fn(t) �
[
1

t
In(2)

] L∑
n�1

an F
[n
t
In(2)

]
, n ≥ 1, t > 0, (59)

where F[ . ] is the Laplace transform of f (t).
The coefficients an depend only on the number of expansion terms n, defined as

an � (−1)n+L/2
min(n,L/2)∑
k�[(n+1)/2]

kL/2(2k)!

(L/2 − k)! k! (k − 1)! (n − k)! (2k − n)!
, n ≥ 1, 1 ≤ L ≤ n (60)

Here, the convergence of the Gaver–Stehfest algorithm for numerical inversion of the Laplace transform
was established by Kuznetsov [47]. It is well proved that the approximations fn(t) converge to f (t) if f is
continuous at t and of bounded variation in a neighborhood of t .

5 Numerical results, discussion, and remarks

In this section, we focus on illustrating an example demonstrating the impact of temperature and moisture
response on the transient hygrothermal stresses in a centrally symmetric solid sphere with a radius 0.2 m
subjected to heat and moisture flux. For this purpose, in numerical calculations, we chose a fiber-reinforced
composite sphere prepared from Thornel (Union Carbide) T300 graphite fibers and Narmco 5208 epoxy resin
[1]. The 1:1 quasi-isotropic hybrid consists of four glass plies oriented at a + 45° angle and two transitional
zones where glass and graphite or vice versa. The proportion of graphite with a 0° orientation to graphite
with a 90° orientation is equal, resulting in a true interleaving structure. It is observed that even energetic
radiation does not significantly alter material moisture absorption characteristics, tensile strength, or buckling
modulus. However, saturated steam exposure causes cracking and material loss due to significant changes
in moisture absorption. The graphite fiber-reinforced epoxy matrix composite (T300/5208) was chosen for
numerical calculations with the following material properties: γ1 � 31.3 × 10−6 cm/cm × K, γ2 � 2.68 ×
10−3 cm/cm × K wt% H2O, υ � 0.33, L � 6.90 × 10−6 cm2/hr, D � 6.90 × 10−7cm2/hr. The physical
parameters as ηc � 0.122 kg/m3K, λc � 2.053m3K/kg, and the fractional order α � 0.2, 0.4, 0.6, 0.8,
β � 0.6 is taken as a special case. The prescribed sectional temperature and moisture supply is taken as θ (1,
t) � δ(t) and ψ(1, t) � δ(t), δ(t) is the well-known Dirac delta function.
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Fig. 2 Comparisons between models (solid: coupled; dash: uncoupled)

Table 1 Temperature θ variation amid different hygrothermoelastic models

r CHTE Hyperbolic DPL MHTE Proposed DPL

0 0 0 0 0 0
0.1 0.0341 0.0345 0.0331 0.0354 0.0290
0.2 0.0728 0.0661 0.0695 0.0715 0.0659
0.3 0.1273 0.1188 0.1169 0.1236 0.1140
0.4 0.2134 0 0.2066 0.2004 0.1849
0.5 0.3254 0 0.3093 0.2944 0.2761
0.6 0.4485 0 0.4327 0.4129 0.3901
0.7 0.5852 0 0.5661 0.5461 0.5281
0.8 0.7456 0 0.7248 0.6965 0.6741
0.9 0.8979 0 0.8801 0.8586 0.8389
1 1 0 1 1 1

5.1 Validation of the proposed model with existing model

In order to validate the precision of the current model, it is compared with different model approaches.
The comparative analysis is depicted in Fig. 2. In the context of this discussion, the term "solid" refers to
a state of being coupled, whereas the "dash" refers to uncoupled, that is, ηc � λc � 0. Following [48,
49], the heat propagation velocity can be obtained as V � {1/[τ 1ThD1

C + (1/2)τ 2ThD
2
C ]}1/2 from Eq. (24),

where the fractional derivative [50, 51] is taken as Dα
C f (t) �[1/�(n−α)]

∫ t
0 (t − τ )n−α−1[dn f (τ )/dτ n)] dτ ,

n − 1 < α < n. Taking τ 1Th � 0.04 and τ 2Th � 0.0016, one obtains, V � √
50. The dimensionless

propagation distance �x � V t � √
50 t � 0.35 (here t � 0.05), is in good agreement with the numerical

prediction [49]. The dimensionless hyperbolic temperature increases with the increase in radial position at
a distance of less than 0.35. However, the dimensionless temperature is inverse when the dimensionless
position is larger than 0.35. The area integral of the temperature distribution along the position denotes the
absorption heat from the external heat source, and the temperature distributions of different models at a certain
time represent the other heat transfer mechanisms. The above aspects indicate that the derivations presented
in the preceding part are accurate, and the numerical method employed demonstrates efficiency, including
hygrothermal coupling, which results in a more rapid temperature response than the absence of hygrothermal
coupling. The observed phenomenon can be attributed, at least in part, to the propagation of moisture waves
resulting from the interaction between heat and moisture.

The results discussed in this section are listed in Table 1, to conduct a comparative influence of Fourier heat
conduction and Fick’s moisture diffusion derivatives of the various hygrothermal models. The collected results
are presented in tabular format, making it easier for other researchers to compare and verify the accuracy of
the results.

The proposed non-simple DPL model can be reduced to a parabolic model by taking equal fractional
order α � β � 1 under uniform initial conditions τqh � τTh � τCm � τqm � 0, temperature discrepancy
factor b � 0, and considering two temperatures as T � � in Eqs. (10) and (15), thus leading to the CHTE
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Fig. 3 Coupled temperature profile along r and t for various b � 0.1, 0.5, 1, 2, 3

model [38]. The maximum temperature occurs at the outer surface owing to the energy accumulation due to
the sectional heat supply, and it drops toward the inner core for both coupled and uncoupled cases; only the
magnitude becomes less for uncoupled temperature distribution. The previously cited model aspects support
the accuracy of the derivations presented in the preceding part and the efficiency of the mathematical approach
employed. Furthermore, when considering hygrothermal coupling, the temperature response exhibits a higher
rate of change than without coupling, possibly due to the propagation of moisture waves resulting from the
coupling of heat and moisture.

5.2 Effect of temperature discrepancy factor on temperature profile

Figure 3 illustrates the graph depicting the temperature distribution along r for various values of the temperature
discrepancy factor b. When the value b � 0 indicates, the above model has been reduced to one-temperature
theory, whereas if b �� 0 it represents two-temperature theories. Temperature distribution increases with a rise
in the difference of temperature value factor b. The maximum temperature occurs at the outer curved surface
of the sphere due to the uniform sectional heat supply. When b � 3, the temperature graph shows a steep
rise due to the energy conversion of heat energy to strain energy. It is learned that the vapor–liquid interface
cannot find a stable state at the initial stage irrespective of b value; the temperature and humidity keep a high
magnitude. Furthermore, it is worth noting that initially, at low temperatures load, evaporation only makes a
small amount of vapor due to the liquid–vapor interface. The amount of vapor exceeds the system’s handle for
high temperatures, so it sometimes rushes out periodically, and it is more for the high-temperature discrepancy
factor. The obtained outcome is consistent with the findings reported earlier [52].

5.3 Effect of fractional distribution response along time

Based on the constitutive Eqs. (24)–(25), it can be observed that when the fractional moisture rate (∂βψ/∂tβ >
0) and (∂2βψ/∂t2β > 0) is positive, moisture functions as a heat source in the context of temperature distri-
bution. On the contrary, when the fractional moisture rate is negative (∂βψ/∂tβ < 0) and (∂2βψ/∂t2β < 0),
it functions as a heat sink. Similarly, the moisture fields are influenced by the fractional temperature rate
(∂αθ/∂tα > 0) and (∂2αθ/∂t2α > 0), comparably, performance as either a source or sink of moisture depend-
ing on its sign. The conclusions drawn are consistent with the inference made in the previous research [39].
Considering Figs. 4 through 8, we will discuss the temperature and moisture distribution in dimensionless for
the coupled and uncoupled models along the dimensionless time. For clear understanding, we draw solid lines
for the coupled model, and dash lines are used for the uncoupled model; the purple color curve indicates the
curve at the lower value of fractional order (α � 0.2), followed by Magenta curves at the mid-part has the
fractional value (α � 0.4), red color indicates the curve at the higher value fractional parameter (α � 0.9),
and the blue color for conductive temperature.
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Fig. 4 Temperature profile along t for b � 1.2, r � 0.8, β � 0.6 for different α

Fig. 5 Moisture profile along t for b � 1.2, r � 0.8, β � 0.6 for different α

Figure 4 illustrates the variation in temperature along dimensionless time t for various fractional-order
parameter values α with a fixed value β, and temperature discrepancy factor b. It is learned that both ther-
modynamic and conductive temperature distribution start increasing with positive values for 0 < t < 1.4 and
then slightly gain stability from t > 1.4 for all the phase lags under consideration. As expected, the tempera-
ture increases with time toward its sphere’s periphery, reaching its maximum value. The reported results are
comparable to those found for the thermodynamic temperature [39, 53], which were derived from physically
equivalent assumptions. This phenomenon may be attributed to the presence of a heat supply, which leads to
a fast moisture reaction in the vicinity of the surface. Consequently, the moisture field is directly dependent
on the ratio of temperature change. If the hygrothermal coupling is disregarded, it becomes apparent that
there will be no moisture on the surface, as previously anticipated, due to the absence of moisture supply.
According to the hygrothermal coupling theory, it is postulated that temperature changes play a pivotal role in
the transportation of moisture within a given environment. It has been observed that when one approaches the
heated zone in the sphere, there is a gradual increase in both temperature and moisture levels, as illustrated in
both Figs. 4 and 5. The moisture distribution ψ starts increasing with positive values for 0 < t < 0.15 and
decreases gradually from 0.15 < t < 2 for all the phase lags under consideration, as shown in Fig. 5. Under
conditions of lowmoisture load, evaporation yields a relatively low quantity of vapor, causing the liquid–vapor
interface to oscillate at an initial stage, and in a later stage, the mass flow rate gets stabilized.

It is observed that the initial value of displacement at the quiescent state is zero. Subsequently, it exhibits
a linear progression until reaching time t � 0.2 with increase in fractional order. Following this point, the
displacement remains constant for an extended duration, as depicted in Fig. 6. The likely explanation for
this phenomenon can be associated with the short time within which the sectional heat energy propagates,
preventing its reach to the vicinity of the outer surface and resulting in minimal elastic deformation.
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Fig. 6 Displacement along t for b � 1.2, r � 0.8, β � 0.6 for different α

Fig. 7 Temperature profile along r for b � 1.2, t � 0.8, β � 0.6 for different α

5.4 Effect of fractional distribution response along the radius

The dimensionless temperature distribution is smaller at the inner core compared to the outer boundary surface,
as shown in Fig. 7. More precisely, the result indicates that temperature is directly proportional to the fractional
order for positive values of phase-lag difference. Figure 8 represents the moisture distribution along the radial
direction for different fractional orders α � 0.2, 0.4, 0.9 and for fixed value β � 0.6. Themoisture distribution
ψ gradually decreases as we move toward the outer spherical boundary surface at r � 1. Figure 9 shows the
nature of radial displacement ur (r , t) curves, which display similar trends irrespective of changes in fractional
orders α and phase-lag variations under consideration. It has been found that the radial displacement is directly
proportional to the fractional order α. Therefore, the radial displacement decreases more while approaching
classical theory. Later, approximately close to spherical boundary surfaces, and due to the accumulation of
sectional heat flux, the displacement curves gain their magnitude to the highest value.

It can be noticed that the radial stress function is found to be compressive at origin and outer curved surface
of solid sphere, as depicted in Fig. 10. Investigation shows that the radial stress is directly proportional to the
fractional order α along the radial direction for b � 1.2, t � 0.8, β � 0.6. The radial stress is zero at the
origin as well as the traction-free spherical boundary condition at r � 1, as shown in Fig. 11. The radial stress
increases instantly for the range 0 < r < 0.06 due to high tensile force and then decreases substantially. The
compressive force is maximum around the outer spherical boundary surface at r � 1.

Figure 11 depicts the dimensionless tangential stress σθθ in a solid sphere along the radial direction for
various fractional-order parameter values. It can be seen from the figure that the tangential stress along the
radial direction increases in a monotonous way from negative to positive values throughout the curve. An
increase in the rate of heat propagation may be the cause of the rise in stress. It may be due to heat propagation
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Fig. 8 Moisture profile along r for b � 1.2, t � 0.8, β � 0.6 for different α

Fig. 9 Displacement profile along r for b � 1.2, t � 0.8, β � 0.6 for different α

Fig. 10 Radial stress along r for b � 1.2, t � 0.8, β � 0.6 for different α

first resulting in compressive force and then expanding further as the radius approaches closer to the object’s
surface.
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Fig. 11 Tangential stress along r for b � 1.2, t � 0.8, β � 0.6 for different α

6 Conclusion

The proposed study examines a hygrothermoelastic problem involving a centrally symmetric sphere. The
investigation is conducted within the context of time-fractional calculus theory. The solid sphere is subjected
to physical heat and moisture flux at its outer surface. Introducing the phase-lags parameter into the classical
Fourier’s and Fick’s laws proposes a dual-phase-lag model to study the hygrothermoelastic response under a
fractional-order framework. A modified integral technique was employed to derive closed-form solutions for
the hygrothermal distribution, displacement, and stress components under unit impulse function. In particular,
all the results are compared with those based on the parabolic and hyperbolic hygrothermal coupled models,
which were taken as a special case of the present model. Pictographic illustrations have been generated to
depict the numerical outcomes relevant to the transient hygrothermoelastic phenomena. The numerical results
yield several inferences:

• A new metric evaluates materials’ ability to facilitate heat and moisture conduction, considering hygrother-
moelastic properties, which can cause temperature decrease without heat transfer to the environment.

• The proposed revised categorization system for materials based on their fractional parameter, following the
theoretical framework of hygrothermoelasticity with two temperatures, is necessary. This parameter is a new
metric for assessing materials’ ability to facilitate heat and moisture conduction, considering the impact of
hygrothermoelastic properties.

• The phase lag of the heat and moisture flux and the phase lag of temperature and moisture gradient signifi-
cantly influence the hygrothermal field variables.

• The theories of coupled classical hygrothermoelasticity, generalized hygrothermoelasticity with two relax-
ation time, and non-simple dual-phase-lag hygrothermoelasticity can be derived as specific instances.

• The proposed revised categorization system for materials based on their fractional parameter, following the
theoretical framework of hygrothermoelasticity with two temperatures, is necessary.

Hence, the findings, as mentioned in the proposed research, have the potential to offer valuable insights for
enhancing the heat andmoisturemanagement of compositeswithin the context of a fractional-order framework.
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